Phytochemical Characterization of Marine Macro Alga *Sargassum polycystem*, Molecular Docking, and *In Vitro* Anti-bacterial Activity against *Psuedomonas aeruginosa*

Gopalan Rajkumar¹, Periyakali Saravana Bhavan¹*, Muthu Suganya¹, Veeran Srinivasan², Madhayan Karthik¹, Rajendran Udayasuriyan¹

1. Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India.
2. Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Submitted 30 Sep 2017; Accepted 29 Oct 2017; Published 1 Dec 2017

Marine macro algae are useful to mankind as food, biofertilizer, and source of bioactive compounds such as agar-agar, alginates, and carrageenan. The aim of this study was to explore the phytochemicals, and the antibacterial activity of the marine alga *Sargassum polycystem*. The marine alga was subjected to ethanolic and methanolic extractions. The preliminary screening for phytochemicals showed the presence of tannins, polyphenols, saponins, cardiac glycosides, and quinones. The GC-MS analysis revealed the presence of totally 16 secondary metabolites: 8 different compounds for each solvent extraction. Among these bioactive compounds, 3 compounds (1, 2 benzenedicarboxylic-dibutylester and 13, docosenamide of ethanolic extract, and 3, 5-diaminoxydihexamethoxy of methanolic extract, showed the binding affinity and ability to react with exotoxin-A of *Pseudomonas aeruginosa*, a common pathogenic bacterium of fishes and prawns. The *in vitro* antibacterial assays revealed that both ethanolic and methanolic extracts of *S. polycystem* possessed the ability to inhibit the growth of *P. aeruginosa*. Therefore, aquaculture medicine could be prepared with *S. polycystem*.

Keywords: Brown alga, ligands, exotoxin-A, *Sargassum polycystem*

Marine macro algae constitute a diverse group of organisms living for the benefit of mankind, are considered as ecologically and biologically important, contribute substantially to marine primary production, and provide a habitat for near shore benthic communities (1-2). They are classified as red (rhodophyta), brown (phaeophyta) or green (chlorophyta) algae depending on their nutrient, and chemical compounds. They contain many bioactive natural substances with medicinal properties such as antibiotics, antioxidant, anticoagulants, antiulcer etc., (3). Marine algae, apart from their valuable proteins carrying essential amino acids, dietary fiber, essential fatty acids, minerals and vitamins, are also a fine source of phenolic compounds (4, 5). *Sargassum* biomass is used as a potential renewable energy resource such as biogas (6-7). *Sargassum* has been used traditionally for treating scrofula, goiter, tumor, edema, testicular pain, and swelling (8). Algin, a carbohydrate present in *Sargassum* is used in textile, paper and pharmaceutical industries (9). The proximate composition of *Sargassum* species are varied from species to species. Based on their environments, they contain 12–16% proteins, and 1.5–2.0% lipids (10-12).

Herbal drugs may not only be useful as remedies, but also as growth stimulators, stress...
resistance boosters, and anti-infection agents (13-20). Hence, herbal drugs are achieving prosperity in disease management, because they are inexpensive, environmentally friendly, and have limited side effects. Several hundred plant varieties are used in medicine, and represent vital sources for effective drugs (21). People in developing countries rely on the traditional medicine for many diseases including cancer, congestive heart failure, hypertension, arthritis, asthma, and infections (22-25). Extracts of *S. polycystem* possess some medicinal properties, and have been tested against diabetes, acetaminophen-induced lipid peroxidation, hyperlipidemia, and stress in rats (26-28).

The antibiotics may reduce the larval growth and inhibit defense mechanisms of the host. Therefore, people are now turning towards natural products to avoid the adverse effects of antibiotics. Herbal extracts may control diseases due to their antioxidant and antimicrobial properties (29). Some natural plant products can exert medicinal activities like anti-depression, growth stimulation, appetite stimulation, immune stimulation, and antimicrobial properties in finned fishes and shrimps larvae (30).

In the present study, the brown alga, *Sargassum polycystem* was subjected to ethanolic and methanolic extractions in order to determine their phytochemicals. Further, the active principle compounds were subjected to molecular docking against the exotoxin-A of *Psuedomonas aeruginosa*, a common pathogenic bacterium of fishes and prawns in order to explore the binding, and interaction ability of ligands. Furthermore, the *in vitro* antibacterial activity of these extracts of *S. polycystem* was investigated against *P. aeruginosa*.

Materials and methods

Collection and identification of seaweed

The brown seaweed was collected from the intertidal region of Mandapam coast (Lat. 9° 17’N; Lon. 79° 19’E) of Gulf of Mannar, south-east coast of Tamil Nadu, India during September 2015. The macro alga species was identified as *S. polycystem* based on its morphology by using identification manual of “Economically Important Seaweeds” (31). Finally, the species, *S. polycystem* was authenticated by Dr. M. Palanisamy, Scientist ‘C’, Southern Regional Centre, Botanical Survey of India (BSI), Coimbatore, India.

Preparation of *S. polycystem* extracts

The collected *S. polycystem* was cleaned properly with seawater to remove all the foreign materials such as epiphytes, sand particles and necrotic parts, and brought to the laboratory in plastic bags. The sample was then rigorously washed with freshwater, sponged up, and spread to dry at room temperature for 2 weeks. Shade dried *S. polycystem* was ground to fine powder, and stored in sterilized containers for further usage.

The powdered sample of *S. polycystem* (75 g) was packed in a pouch made up of No. 1 Whatman filter paper, and ethanolic as well as methanolic extractions were performed (450 ml, 1:6 w/v) individually/ freshly for 6-9 h each (30 to 36 cycles) until a clear colorless solution was obtained by using Soxhlet apparatus. The extract was filtered by using double layer muslin cloth, concentrated at 40-50 °C using rotary vacuum evaporator (ROTAVAP) connected with a vacuum pump and cryostat, and dried at 40 °C under hot air oven. The dark, gummy solid obtained was used for further investigations.

Qualitative analysis of *S. polycystem*

The ethanolic and methanolic extracts of *S. polycystem* were subjected to phytochemical analysis by adopting the standard qualitative procedures (32). The presence of different primary phytochemical compounds such as alkaloids, terpenoids, flavonoids, tannins, polyphenols, saponins, cardiac glycosides, and quinones was detected.

Gas chromatography-mass spectrum (GC-MS) analysis

The extracts of *S. polycystem* were subjected to GC-MS (The Trace GC Ultra and DSQII model MS with inbuilt pre-filter to reduce the neutral particles, Thermo Fisher Scientific Company Pvt. Ltd.)
analysis for identification of different secondary phytochemical components with following working conditions: the injector port temperature was 250 °C; the interface temperature was 250 °C with source maintained at 200 °C; the oven temperature was programmed as variable, 70 °C for 2 min, 150 °C @ 8 °C/min, up to 260 °C @ 10 °C/min; the injector was operating in splitless mode; the DB-35ms nonpolar column (Agilent Co., USA) was 0.25 mm OD x 0.25 μm ID x 30 m length; helium was used as carrier gas at 1 ml/min; mass range scan: 50-650 Da; motor vacuum pressure was <40 bar; ionization energy was -70 eV.

The secondary phytochemical components present in each extract were identified by comparison of retention indices and mass spectra fragmentation patterns with those stored on the computer library, and also with published literature. National Institute of Standard and Technology (NIST4), and WILEY9 (33) on-line library source were also used for matching the identified components.

Isolation and characterization of Pseudomonas aeruginosa from infected freshwater Macrobrachium rosenbergii prawn, collected from a culture pond

Pseudomonas aeruginosa is a common pathogenic bacterium in aquaculture, and this disease causing agent led to black spot, brown spot, shell disease (melanized lesions, and bacterial necrosis) in all life stages, more commonly the juvenile and adult stages, of the freshwater prawn *Macrobrachium rosenbergii* (34).

The gram negative bacterium, *P. aeruginosa* was isolated from infected *M. rosenbergii* taken from a culture pond at Singanallur (Lat.10.99°N; Lon. 77.02°E), Coimbatore, Tamil Nadu, India, and brought to the laboratory in insulated box with ice to maintain a temperature around 4–6 °C. Affected muscle sample was cut, and homogenized with phosphate buffer saline (PBS), spread out into nutrient agar medium (Hi-Media), incubated at 37 °C for 24 h. Then bacterial colonies were observed, and isolated. The isolated colony was pure cultured into *Pseudomonas* isolation agar (Hi-Media), a specific medium for selective isolation of *Pseudomonas sp.*, incubated at 37 °C for 24 h. The isolated bacterial species was identified by morphological and biochemical characteristics. Molecular identification were previously reported and their GenBank accession number (KX398049) from our laboratory (35).

Molecular docking

Intermediary steps, such as PDBQT files for protein (bacterial toxin) and ligands (bioactive compounds identified) preparation and grid box creation were done by using graphical user interface program AutoDock Tools (ADT). ADT assigned polar hydrogens, united atom Kollman charges, solvation parameters, and fragmental volumes to the protein. AutoDock saved the prepared file in PDBQT format. Auto Grid was used for the preparation of the grid map using a grid box. The grid size was set to 60 x 60 x 60 xyz points with grid spacing of 0.375 Å and grid center was designated at dimensions (x, -1.095; y, -1.554 and z, 3.894). A scoring grid was calculated from the ligand structure to minimize the computation time.

AutoDock was employed for docking using protein and ligand information along with grid box properties in the configuration file. AutoDock uses the iterated local search global optimizer (36-37). Protein and ligands are esteemed as rigid. The results less than 1.0 Å in positional root-mean square deviation (RMSD) were clustered together, and represented by the most favorable free energy of binding. The pose with the lowest binding energy or binding affinity was extracted, and aligned with receptor structure for further analysis.

Determination of in vitro antibacterial activity

The antibacterial activity was studied by agar well diffusion method (38). To activate the bacterium before inoculation, it was cultured on nutrient broth (Hi-Media), and incubated at 37 °C for 24 h. For inoculum preparation, and antibacterial activity assay, Mueller-Hinton agar (Hi-Media,
India) was used. Approximately, 20 ml of the autoclaved medium was dispensed into sterile plates, and allowed to solidify under aseptic conditions. Then, the bacteria were inoculated, and spread with a sterile swab on the surface of agar plates. Briefly, three wells of 5 mm diameter were aseptically made on the assay plates seeded with target microorganism, using the wide end of sterile 200 μl pipette tips. The crude extracts of S. polycystem were reconstituted in respective solvents at a concentration of 100 mg/ml. The wells were then filled with 50 μl of each solvent extract of S. polycystem. The individual solvents (ethanol and methanol), and amoxicillin (250 mg/ml) were used as negative and positive controls, respectively. The plates were incubated overnight at 37 ºC. The diameter of inhibition zones, including the diameter of the well (5 mm) was measured, and compared to that of positive and negative controls.

Results

Phytochemicals of S. polycystem

The preliminary phytochemicals of S. polycystem extracts are presented in table 1. The ethanolic extract of S. polycystem showed the presence of 5 primary compounds, such as tannins, polyphenols, saponins, cardiac glycosides, and quinones. Of which polyphenols, saponins, cardiac glycosides and quinones were luxuriantly present. Tannins were moderately present. Similarly, the methanolic extract of S. polycystem showed the presence of 5 primary compounds, such as tannins, polyphenols, saponins, cardiac glycosides and quinones. Of which polyphenols, cardiac glycosides and quinones were luxuriantly present. Saponins were moderate, and tannins were just present in methanolic extract of S. polycystem (Table 1).

GC-MS analyzes of the ethanolic extract of S. polycystem revealed the presence of 8 different secondary compounds [2, 3-dimethoxy-1-methylphenanthrene-9-carboxaldehyde-4-formyl-d; tetradecane; hexadecane; octadecane; 1, 2-benzene dicarboxylic acid, dibutyl ester; 4-ethylen-3, 5-difluoro-2, 6-bis (trimethylsilyl)-4H-cyclohexenone [2,1-b:3,4-b'] dithiophene; rac-4, 4'-di tert-butyl-6'hydroxymethyl-2,3,2',3'-tetraamethoxy-6-methyl-biphenol; 13 docosenamide, (Z), of which 4 compounds including tetradecane; hexadecane; 2-benzencarboxylic acid, dibutyl ester; 13-docosenamide, (Z) showed bioactive properties (Tables 2 and 3; figure 1).

The methanolic extract of S. polycystem contained 8 different secondary compounds [13,18-i-epoxy-1-methyl-13, 17-seco-osta-1, 3, 5(10)-trien-17-nitrite; thiodcarboxylate O, O-dicyclohexyl; benzene, 1-(1, 5-dimethyl-4-hexenyl)-4-methyl--; N-Methoxy-N-methyl-2-(indol3’yl) acetamide; 3, 5-diminoacetoxythoxatin trimerest; 6-Morpholino-2-(1-methylpyrazino) -17-hydroxyandrost-4-en-3-one 17-acetate; e-[5-(2-furyl)-1, 3, 4-oxadiazol-2-thiolacetoxy]- (1H1.2,4triazol1yl) acetophenone; 1-[N-(9-fluorenylmethylene)-carbonyl]- (15,2R)-1-amino-2-hydroxyhexyl]-4-methyl-2, 6, 7-trioxabicyclo[2.2.2]octane, of which 4 compounds including 13,18-i-epoxy-1-methyl-13, 17-seco-osta-1, 3, 5(10)-trien-17-nitrite; N-methoxy-N-methyl-2-(indol3’yl) acetamide; 3, 5-diminoacetoxythoxatin; 6-morpholino-2-(1-methylpyrazino) -17-hydroxyandrost-4-en-3-one 17-acetate contained bioactive principles (Tables 2 and 4;
Phytochemicals and Anti-bacterial Activity of *S. polycystem*

Table 2. Secondary phytochemical compounds identified through GC-MS in ethanolic and methanolic extracts of *S. polycystem*, and their chemical structures and molecular formulae.

<table>
<thead>
<tr>
<th>Peak RT</th>
<th>Name of the compounds identified</th>
<th>Chemical structure and molecular formula</th>
<th>Name of the compounds identified</th>
<th>Chemical structure and molecular formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.73</td>
<td>2,3-Dimethoxy-1-methylphenanthrene-9-carboxaldehyde-formyl-d</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7.77</td>
<td>Tetradecane</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8.75</td>
<td>--</td>
<td></td>
<td>13,18-1-Epoxy-1-methyl-13,17-seco-oestra-1,3,5(10)-trien-17-nitrile</td>
<td></td>
</tr>
<tr>
<td>10.40</td>
<td>--</td>
<td></td>
<td>Thiodicarboxamide O,O-dicyclohexyl ester</td>
<td></td>
</tr>
<tr>
<td>10.74</td>
<td>Tetradecane</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>12.41</td>
<td>--</td>
<td></td>
<td>Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl-</td>
<td></td>
</tr>
<tr>
<td>14.84</td>
<td>Hexadecane</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>17.51</td>
<td>--</td>
<td></td>
<td>N-Methoxy-N-methyl-2-(indol-3'yl) acetamide</td>
<td></td>
</tr>
<tr>
<td>19.10</td>
<td>Octadecane</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>22.21</td>
<td>1,2-Benzenedicarboxylic acid, dibutyl ester</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>23.17</td>
<td>--</td>
<td></td>
<td>3,5-diaminodeoxymethoxatin trimester</td>
<td></td>
</tr>
<tr>
<td>28.47</td>
<td>4-Ethlenedioxy3, 5-dihydro2,6bis (trimethylsilyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene</td>
<td></td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>29.02</td>
<td>--</td>
<td></td>
<td>6-Morpholino-2-(1-methylpyrazino)-17-hydroxy and rost-4-en-3-one 17-acetate</td>
<td></td>
</tr>
<tr>
<td>31.81</td>
<td>--</td>
<td></td>
<td>e[5-(2-Furyl)-1,3,4-oxadiauzol-2-thiolacetoxy]-e-(1H-1,2,4-triazol-1-yl)acetophenone</td>
<td></td>
</tr>
</tbody>
</table>

RT: retention time
Therefore, *S. polycystem* contains 16 different secondary compounds, of which 8 have bioactive properties (Tables 3 and 4).

Molecular docking

The 8 bioactive compounds were subjected to molecular docking with the exotoxin-A of *P. aeruginosa*. The exotoxin-A was found to be able to bind with three compounds only (2 active compounds from ethanolic, and 1 compound from methanolic extract); they were 1, 2 benzenedicarboxylic-dibutylester; 1, 3 docosenamide and 3, 5 diaminoxyhexoxy, respectively. The ligand, 1, 2 benzenedicarboxylic-dibutylester was found to be able to bind its amino acid S113 to T533 of exotoxin-A. The second compound 1, 3 docosenamide was able to bind T533 (amino acid of protein) to S484 (amino acid of ligand). The third compound 3, 5 diaminoxyhexoxy was able to bind K71 (amino acid of protein) and K485 (amino acid of ligand). The gliding score, docking score, and length of the H bond were shown in tables 5 and 6, and figures 3-5. The ethanol extracted compound of *S. polycystem* 1, 2 benzenedicarboxylic-dibutylester showed better gliding score (-3.8), followed by other compounds viz, 1, 3 docosenamide (-2.4), and 3, 5 diaminoxyhexoxy (-2.3). These results confirmed the antibacterial activity of the extracted compounds against *P. aeruginosa*.

In vitro antibacterial activity of *S. polycystem* extracts against *P. aeruginosa*

The active components present in the seaweed *S. polycystem*, and extracted by ethanol and methanol showed antibacterial activity against the bacterium *P. aeruginosa*. This was assessed by measuring the zone of inhibition, and compared with the standard antibiotic, amoxicillin. The maximum inhibition zone of 13 mm was observed in ethanolic extract of *S. polycystem*, while the methanolic extract produced only 12 mm zone of inhibition. The positive control (amoxicillin) was produced 15 mm zone of inhibition. In the cases negative controls (ethanol and methanol), there were no inhibition zones (figure 6).
Phytochemicals and Anti-bacterial Activity of S. polycystem

Figure 1. GC-MS chromatogram of the ethanolic extract of S. polycystem.

Figure 2. GC-MS chromatogram of the methanolic extract of S. polycystem.

Figure 3. Complexity of protein–ligand interactions of exotoxin-A with 1, 2 benzenedicarboxylic dibutylester.

Figure 4. Complexity of protein–ligand interactions of exotoxin-A with 1, 3 docosenamide.

Figure 5. Complexity of protein–ligand interactions of exotoxin-A with 3, 5-diaminodeoxymethoxy.

Figure 6. *In vitro* antibacterial activity of ethanolic and methanolic extracts of S. polycystem against *P. aeruginosa*. SPE: *Sargassum polycystem* ethanolic extract; SPM: *Sargassum polycystem* methanolic extract; C: positive control (amoxicillin); S: sample; E and M: negative control (ethanol and methanol).
Discussion

In the present study, the ethanolic extract of *S. polycystem* showed moderate presence of tannins, whereas methanol extract of *S. polycystem* showed just presence of tannins. The presence of tannins, polyphenols and cardiac glycosides was reported in methanolic extract of *S. polycystem* and *T. ornata* (39-40). Tannins are used in medicine as constrictive agents, healing factors in inflammation, leucorrhoea, gonorrhoea, hurts, clumps, and as antitoxins. Tannins also showed inhibitory effects against viruses, bacteria, and parasites. Their antioxidant and anti-ulcer properties make them favorite candidates for possible therapeutic applications (41-42).

In the present study, ethanolic and methanolic extracts of *S. polycystem* showed luxuriant presence of polyphenols. The phenolic compounds, have biological and pharmacological properties especially antimicrobial, anti-viral, anti-inflammatory, cytotoxic, anti-mutagenic, and anti-carcinogenic activities (43-45). Seaweeds extracts are considered to be a rich source of phenolic compounds (46-47). Phenolic compounds are one of the most effective antioxidants in brown algae (48).

The ethanolic extract of *S. polycystem* showed luxuriant presence, whereas methanolic extract showed moderate presence of saponins. Saponins are involved in various biological effects including hemolytic and anti-bacterial activities (49).

In the present study, ethanolic and methanolic extract of *S. polycystem* showed luxuriant presence of cardiac glycosides. Cardiac glycosides are one of the most prevailing phytoconstituents, and are used as arrow poisons or cardiac drugs (50). The cardiac glycosides are steroid compounds which act specifically and mainly on the cardiac muscle upon injection into man or animals. They are used as agent of choice in the treatment of congestive cardiac failure (51). The ethanolic and methanolic extracts of *S. polycystem* showed also luxuriant presence of quinones. Quinones are often used in the treatment of malaria and tumors (52). They have anti-inflammatory, anti-bacterial, and immunomodulating potentials (53).

<table>
<thead>
<tr>
<th>RT</th>
<th>Name of the compounds</th>
<th>P</th>
<th>MF</th>
<th>MW</th>
<th>Area (%)</th>
<th>SI</th>
<th>RSI</th>
<th>Biological properties by literature only</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.73</td>
<td>2,3-Dimethoxy-1-methylphenanthrene-9-carboxaldehyde-formyl-d</td>
<td>31.81</td>
<td>C_{15}H_{15}DO_3</td>
<td>280</td>
<td>3.32</td>
<td>472</td>
<td>663</td>
<td>---</td>
</tr>
<tr>
<td>7.77</td>
<td>Tetradecane</td>
<td>8.45</td>
<td>C_{14}H_{30}</td>
<td>198</td>
<td>10.59</td>
<td>754</td>
<td>843</td>
<td>Antimicrobial (54)</td>
</tr>
<tr>
<td>10.74</td>
<td>Tetradecane</td>
<td>46.32</td>
<td>C_{14}H_{30}</td>
<td>198</td>
<td>11.47</td>
<td>911</td>
<td>922</td>
<td>Antimicrobial (54)</td>
</tr>
<tr>
<td>14.84</td>
<td>Hexadecane</td>
<td>35.11</td>
<td>C_{16}H_{34}</td>
<td>226</td>
<td>8.40</td>
<td>894</td>
<td>905</td>
<td>Antibacterial, antioxidant (55-56)</td>
</tr>
<tr>
<td>19.10</td>
<td>Octadecane</td>
<td>30.72</td>
<td>C_{18}H_{38}</td>
<td>254</td>
<td>3.57</td>
<td>876</td>
<td>906</td>
<td>---</td>
</tr>
<tr>
<td>22.21</td>
<td>1,2-Benzenedicarboxylic acid, dibutyl ester</td>
<td>20.11</td>
<td>C_{18}H_{22}O_4</td>
<td>278</td>
<td>12.37</td>
<td>933</td>
<td>967</td>
<td>Antimicrobial, antifouling (57)</td>
</tr>
<tr>
<td>28.47</td>
<td>4-Ethylendioxy-3,5-difluoro-2,6-bis(trimethylsilyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene</td>
<td>88.28</td>
<td>C_{17}H_{22}F_2O_3S_6</td>
<td>416</td>
<td>1.97</td>
<td>800</td>
<td>802</td>
<td>---</td>
</tr>
<tr>
<td>32.12</td>
<td>rac-4,4′-Di-tert-buty1-6-hydroxymethyl-1,2,3,2′,3′-tetramethoxy-6-methylbiphenol</td>
<td>95.93</td>
<td>C_{26}H_{35}O_5</td>
<td>430</td>
<td>4.72</td>
<td>694</td>
<td>721</td>
<td>---</td>
</tr>
<tr>
<td>35.31</td>
<td>13-Docosenamide, (Z)-</td>
<td>50.87</td>
<td>C_{22}H_{43}NO</td>
<td>337</td>
<td>19.79</td>
<td>638</td>
<td>694</td>
<td>Antimicrobial (58)</td>
</tr>
</tbody>
</table>

RT: retention time; P: probability; MF: molecular formula; MW: molecular weight; SI: similar index; RSI: reverse similar index; ---: absent activity.
Table 4. GC-MS profiles of phytochemicals for methanolic extracted S. polycystem components

<table>
<thead>
<tr>
<th>RT</th>
<th>Name of the compound</th>
<th>P</th>
<th>MF</th>
<th>MW</th>
<th>Area (%)</th>
<th>SI</th>
<th>RSI</th>
<th>Biological properties by literature only</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.75</td>
<td>13,18-i-Epoxy-1-methyl-13,17-seco-oestr-1,3,5(10)-trien-17-nitrile</td>
<td>25.46</td>
<td>C_{15}H_{21}NO</td>
<td>281</td>
<td>0.83</td>
<td>446</td>
<td>623</td>
<td>Analgesic (59)</td>
</tr>
<tr>
<td>10.40</td>
<td>Thiodicarbonoate O,O-dicyclohexylester</td>
<td>64.90</td>
<td>C_{10}H_{20}O_{5}S_{3}</td>
<td>318</td>
<td>4.91</td>
<td>458</td>
<td>786</td>
<td>---</td>
</tr>
<tr>
<td>12.41</td>
<td>Benzene, 1-(1,5-dimethyl-4-oxoetyl)-4-methyl-</td>
<td>68.47</td>
<td>C_{10}H_{22}</td>
<td>202</td>
<td>4.44</td>
<td>859</td>
<td>965</td>
<td>---</td>
</tr>
<tr>
<td>17.51</td>
<td>N-Methoxy-N-methyl-2-(indol3'yl)acetamide</td>
<td>18.70</td>
<td>C_{12}H_{16}N_{2}O_{2}</td>
<td>218</td>
<td>28.34</td>
<td>428</td>
<td>937</td>
<td>Antioxidant, anti-inflammatory (60, 61)</td>
</tr>
<tr>
<td>23.17</td>
<td>3,5-diaminodioxymethoxatrien trimester</td>
<td>73.34</td>
<td>C_{14}H_{18}N_{6}O_{6}</td>
<td>386</td>
<td>7.08</td>
<td>701</td>
<td>866</td>
<td>Antibacterial (62)</td>
</tr>
<tr>
<td>29.02</td>
<td>6-Morpholino-2-(1-methylpyrazino)-17-hydroxyandrost-4-en-3-one 17-acetate</td>
<td>93.19</td>
<td>C_{30}H_{27}N_{6}O_{4}</td>
<td>513</td>
<td>4.28</td>
<td>795</td>
<td>923</td>
<td>Antibacterial (63-64)</td>
</tr>
<tr>
<td>31.81</td>
<td>e-[5-(2-Furyl)-1,3,4-oxadiazol-2-thiolacetoxy] (1H1,2,4triazol1yl)acetophenone</td>
<td>9.67</td>
<td>C_{10}H_{12}N_{3}O_{5}S</td>
<td>411</td>
<td>18.23</td>
<td>328</td>
<td>467</td>
<td>---</td>
</tr>
<tr>
<td>34.34</td>
<td>1-[(N-9-Fluorenylmethyloxycarbonyl-(1S,2R)-1-amino-2-hydroxyethyl]-4-methyl-2,6,7-</td>
<td>21.17</td>
<td>C_{29}H_{41}NO_{6}</td>
<td>467</td>
<td>2.97</td>
<td>365</td>
<td>700</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>trioxabicyclo[2.2.2]octane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RT: retention time; P: probability; MF: molecular formula; MW: molecular weight; SI: similar index; RSI: reverse similar index; ---: absent activity.

Table 5. Details of glide score, docking score, and hydrogen bond length for ligands and exotoxin-A protein

<table>
<thead>
<tr>
<th>Name of the compound</th>
<th>Glide score</th>
<th>Docking score</th>
<th>H bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-Benzenedicarboxylic acid, dibutyl ester</td>
<td>-3.8</td>
<td>-3.8</td>
<td>-1.1</td>
</tr>
<tr>
<td>13-Docosenamide</td>
<td>-2.4</td>
<td>-2.4</td>
<td>-1.1</td>
</tr>
<tr>
<td>3, 5 Diaminodioxymethoxy</td>
<td>-2.3</td>
<td>-2.3</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

Table 6. Details of glide score, docking score, and hydrogen bond length for ligands and exotoxin-A protein

<table>
<thead>
<tr>
<th>Name of the compounds</th>
<th>AA from exotoxin-A</th>
<th>AA from ligand</th>
<th>2ZT atom</th>
<th>Bond length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-Benzenedicarboxylic acid, dibutyl ester</td>
<td>Hydrogen</td>
<td>Oxygen</td>
<td>T533</td>
<td>2.176</td>
</tr>
<tr>
<td></td>
<td>Oxygen</td>
<td>Hydrogen</td>
<td>S113</td>
<td>1.994</td>
</tr>
<tr>
<td>13-Docosenamide</td>
<td>Hydrogen</td>
<td>Oxygen</td>
<td>T533</td>
<td>2.070</td>
</tr>
<tr>
<td></td>
<td>Oxygen</td>
<td>Hydrogen</td>
<td>S484</td>
<td>2.230</td>
</tr>
<tr>
<td>3, 5 Diaminodioxymethoxy</td>
<td>Hydrogen</td>
<td>Oxygen</td>
<td>K71</td>
<td>2.443</td>
</tr>
<tr>
<td></td>
<td>Hydrogen</td>
<td>Oxygen</td>
<td>K485</td>
<td>2.147</td>
</tr>
</tbody>
</table>
Regarding the antibacterial activity, the ethanolic extract of *S. polycystum* showed the strongest activity against *P. aeruginosa*. In *P. aeruginosa*, exotoxin-A exerts its cellular toxicity through ADP ribosylation of translation elongation factor 2, this finally results into enzyme cleavage activity and binding of cell surface receptor and this can cause toxicity in infected cell, hence the target is important (61). The compounds, 1, 2 benzenedi-carboxylic-dibutylester, 1, 3 docosenamide, and 3, 5 diaminodeoxymethoxy showed a great antibacterial activity against exotoxin-A.

The seaweeds are rich in secondary metabolites with great medicinal values, and have been largely used in the drug and pharmaceutical fabrication.

Many of the seaweeds possess bioactive components, which inhibit the growth of some gram-positive and gram-negative bacteria (65). In general, the marine algal extracts were used as remedies against helmints, bacteria, fungi, cough, hypertension, tumor, and diarrhea (65-67).

In conclusion, the GC-MS analysis revealed the presence of 16 phytochemical components. Of which 8 compounds were previously reported to have bioactive properties. Among the 8 bioactive compounds, 3 showed affinity to interact with exotoxin-A of *P. aeruginosa*. These three active principle compounds need to be isolated, purified and characterized first and then a detailed study can be conducted on their pharmaceutical properties.

Acknowledgement

The authors gratefully acknowledge Dr. M. Palanisamy, Scientist ‘C’, Southern Regional Centre, Botanical Survey of India (BSI), Coimbatore, India, for authentication of the seaweed, *Sargassum polycystum*. The South India Textile Research Association (SITRA), Coimbatore, Tamil Nadu, India, is acknowledged for providing GC-MS outsourcing service.

Conflict of interest

The authors declare that they have no competing interest.

References

13. Bhavan P, Jeyanthi S, Rebecca A. Growth performance of the freshwater prawn *Macrobrachium rosenbergii* post larvae fed...
34. FAO. Cultured Aquatic Species Information Programme Macrobrachium rosenbergii (De Man, 1879). FAO Fisheries and Aquaculture Department. Aquatic Animal Pathogen and Quarantine Information System AAPQIS. 2014.
36. Baxter J. Local optima avoidance in depot location. J Oper
65. Kolanjinathan K, Ganesh P, Govindarajan M. Antibacterial
